RAS Earth ScienceГеоморфология и палеогеография Geomorphology and Paleogeography

  • ISSN (Print) 2949-1789
  • ISSN (Online) 2949-1797

DYNAMICS OF EROSION AND SEDIMENT SUPPLY IN NEAR-PRISTINE LOWLAND CATCHMENTS OF CENTRAL SIBERIA DUE TO LAND USE CHANGES AND FOREST FIRES

PII
S29491797S2949178925020043-1
DOI
10.7868/S2949179725020043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 56 / Issue number 2
Pages
231-250
Abstract
The article examines a quantitative assessment of basin erosion and suspended sediment yield in poorly developed catchments within the Lena River basin. The first catchment (15740 km) is located in the middle reaches of the Lena River near the city of Yakutsk. The second catchment (1709 km) is located in the headward portion of the Bolshaya Cherepanikha River basin. The assessment was carried out using the erosion-accumulation model WaTEM/SEDEM, as well as a modified model developed by the State Hydrology Institute (SHI) applied to the forested catchments of the river basin. The amount of soil lost to erosion and suspended sediment yield were obtained for each catchment. The long-term average value of eroded soil within the catchment area near Yakutsk increased from 4.7 (2003–2007) to 4.9 (2015–2019) t/km per year most likely due to replacement of tree coverage with meadows in the areas effected by wild fires; and decreased from 7.2 (1985–1990) to 6.4 (2015–2019) t/km per year within the Bolshaya Cherepanikha River catchment likely due to expansion of tree coverage, decrease of meadows, and disappearance of cropland. To verify the models, the modeling results were compared with measured suspended sediment yield at gauging station. It was established that the observed value of sediment yield according to data from the Bom gauging station located within Bolshaya Cherepanikha River catchment also decreased during two studied periods from 0.41 to 0.37 t/km per year. The decline is explained by a decrease in the intensity of agricultural activity in the catchment, as well as an increase in the area covered by forest and a decrease in meadows. Sediment yield trends within the catchment area near the city of Yakutsk and the Lena River were also compared with each other. Thus, the measured value of suspended sediment yield in Lena at the Tabaga gauging station was characterized by an increasing trend from 8.76 to 10.82 t/km per year over the same periods. The results showed a significant contribution of basin erosion to sediment yield in smaller rivers (Bolshaya Cherepanikha River), while in the large rivers, like Lena River still remains very small.
Keywords
WaTEM/SEDEM ливневая эрозия талая эрозия аккумуляция сток наносов динамика земного покрова р. Лена
Date of publication
10.01.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Буряк Ж.А., Нарожняя А.Г., Маринина О.А. (2023) Эрозионная опасность пахотных земель Белгородской области. Региональные геосистемы. Т. 47. № 1. С. 101–115. https://doi.org/10.52575/2712-7443-2023-47-1-101-115
  2. 2. Голосов В.Н. (2006) Эрозионно-аккумулятивные процессы в речных бассейнах освоенных равнин. М.: ГЕОС. 296 с.
  3. 3. Григорьев А.А. (2011) Формирование древостоев лист­венницы и березы в высокогорьях Приполярного Урала в условиях современного изменения климата. Автореф. дис. … канд. с.-х. наук. Екатеринбург: Уральский государственный лесотехнический университет. 23 с.
  4. 4. Григорьев В.Ю., Фролова Н.Л., Киреева М.Б., Степаненко В.М. (2022) Пространственно-временная изменчивость ошибки воспроизведения осадков реанализом ERA5 на территории России. Известия Российской академии наук. Серия географическая. Т. 86. № 3. С. 435–446. https://doi.org/10.31857/S2587556622030062
  5. 5. Ермолаев О.П., Мальцев К.А., Мухарамова С.С. и др. (2017) Картографическая модель речных бассейнов европейской России. География и природные ресурсы. № 2. С. 27–36. https://doi.org/10.21782/GIPR0206-1619-2017-2 (27-36)
  6. 6. Жидкин А.П., Смирнова М.А., Геннадиев А.Н. и др. (2021) Цифровое моделирование строения и степени эродированности почвенного покрова (Прохоровский район Белгородской области). Почвоведение. № 1. С. 17–30. https://doi.org/10.31857/S0032180X21010159
  7. 7. Краснощеков Ю.Н. (2018) Почвы горных лесов Прибайкалья и их трансформация под влиянием пожаров. Почвоведение. № 4. C. 387–401. https://doi.org/10.7868/S0032180X18040019
  8. 8. Ларионов Г.А. (1993) Эрозия и дефляция почв. М: Изд-во МГУ. 200 с.
  9. 9. Литвин Л.Ф., Кирюхина З.П., Краснов С.Ф. и др. (2021) География динамики земледельческой эрозии почв Сибири и Дальнего Востока. Почвоведение. № 1. С. 136–148. https://doi.org/10.31857/S0032180X2101007X
  10. 10. Магрицкий Д.В. (2022) Новые данные о распределении нормы стока воды на Северо-Востоке России и притоке речных вод в арктические моря. Водное хозяйство России: проблемы, технологии, управление. № 6. С. 70–85. https://doi.org/10.35567/19994508_2022_6_5
  11. 11. Магрицкий Д.В., Банщикова Л.С. (2021) Реакция стока наносов в бассейне р. Лены на изменения климата и хозяйственную деятельность. В сб.: Динамика и взаимодействие геосфер земли. Материалы Всероссийской конференции с международным участием, посвященной 100-летию подготовки в Томском государственном университете специалистов в области наук о Земле. В 3 т. Т. II. Науки о Земле. С. 61–65.
  12. 12. Магрицкий Д.В., Чалов С.Р., Гармаев Е.Ж. и др. (2023) Новые данные о трансформации стока воды и наносов в дельте реки Лены по итогам экспедиционных измерений в августе 2022 г. Пробл. Аркт. Антаркт. Т. 69. № 2. С. 171–190. https://doi.org/10.30758/0555-2648-2023-69-2-171-190
  13. 13. Мальцев К.А., Ермолаев О.П. (2019) Потенциальные эрозионные потери почвы на пахотных землях европейской части России. Почвоведение. № 12. С. 1502–1512. https://doi.org/10.1134/S0032180X19120104
  14. 14. Рыжов Ю.В. (2009) Эрозионно-аккумулятивные процессы в бассейнах малых рек юга Восточной Сибири. Гео­графия и природные ресурсы. № 3. С. 94–101.
  15. 15. Цыпленков А.С., Чалов С.Р., Шинкарева Г.Л. (2022) Вод­ная эрозия почв в бассейнах крупнейших рек Сибири. Известия Русского географического общества. Т. 154. № 5–6. С. 86–111.
  16. 16. Шынбергенов Е.А., Ермолаев О.П. (2017) Потенциальная эрозия почв бассейна р. Лены. Вестник Удмурт­ского университета. Серия Биология. Науки о Земле. T. 27. № 4. С. 513–528.
  17. 17. Baartman J.E.M., Masselink R., Keesstra S.D. et al. (2013) Linking landscape morphological complexity and sedi­ment connectivity. Earth Surf. Processes Landforms. Vol. 38. Iss. 12. P. 1457–1471. https://doi.org/10.1002/esp.3434
  18. 18. Belillas C.M., Rodà F. (1993) The effects of fire on water quality, dissolved nutrient losses and the export of particulate matter from dry heathland catchments. J. Hydrol. Vol. 150. Iss. 1. P. 1–17. https://doi.org/10.1016/0022-1694 (93)90153-z
  19. 19. Bhattarai R., Dutta D. (2008) A comparative analysis of sediment yield simulation by empirical and process-oriented models in Thailand (Une analyse comparative de simulations de l’exportation sédimentaire en Thaïlande à l’aide de modèles empiriques et de processus). Hydrol. Sci. J. Vol. 53. Iss. 6. P. 1253–1269. https://doi.org/10.1623/hysj.53.6.1253
  20. 20. Boomer K.B., Weller D.E., Jordan T.E. (2008) Empirical models based on the universal soil loss equation fail to predict sediment discharges from Chesapeake Bay catchments. J. Environ. Qual. Vol. 37. Iss. 1. P. 79–89. https://doi.org/10.2134/jeq2007.0094
  21. 21. Borrelli P., Alewell C., Alvarez P. et al. (2021) Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. Vol. 780. 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
  22. 22. Borrelli P., Robinson D.A., Fleischer L.R. et al. (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. Vol. 8. No. 1. https://doi.org/10.1038/s41467-017-02142-7
  23. 23. Borselli L., Cassi P., Torri D. (2008). Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena. Vol. 75. Iss. 3. P. 268–277. https://doi.org/10.1016/j.catena.2008.07.006
  24. 24. Brasington J., Richards K. (1998) Interactions between model predictions, parameters and DTM scales for ­TOPMODEL. Comput. Geosci. Vol. 24. No. 4. P. 299–314.
  25. 25. Burke J.M., Prepas E.E., Pinder S. (2005) Runoff and phosphorus export patterns in large forested watersheds on the western Canadian Boreal Plain before and for 4 years after wildfire. J. Environ. Eng. Sci. Vol. 4. No. 5. P. 319–325. https://doi.org/10.1139/s04-072
  26. 26. Chalov S., Ivanov V. (2023). Catchment and in-channel sources in three large Eurasian Arctic rivers: Combining monitoring, remote sensing and modelling data to construct Ob’, Yenisey and Lena rivers sediment budget. Ca­tena. Vol. 230. 107212. https://doi.org/10.1016/j.catena.2023.107212
  27. 27. Chalov S., Prokopeva K. (2022) Sedimentation and Erosion Patterns of the Lena River Anabranching Channel. Water. Vol. 14. Iss. 23. 3845. https://doi.org/10.3390/w14233845
  28. 28. Chalov S., Prokopeva K., Habel M. (2021) North to south variations in the suspended sediment transport budget within large Siberian River deltas revealed by remote sen­sing data. Remote Sens. Vol. 13. Iss. 22. P. 4549. https://doi.org/10.3390/rs13224549.
  29. 29. Cohen S., Kettner A.J., Syvitski J.P.M. et al. (2013) WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation. Comput. Geosci. Vol. 53. P. 80–93. https://doi.org/10.1016/j.cageo.2011.08.011
  30. 30. De Vente J., Poesen J., Verstraeten G. et al. (2008) Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global and Planetary Change. Vol. 60. Iss. 3-4. P. 393–415. https://doi.org/10.1016/j.gloplacha.2007.05.002
  31. 31. Earl S.R., Blinn D.W. (2003) Effects of wildfire ash on water chemistry and biota in South-Western U.S.A. streams. Freshwater Biol. Vol. 48. Iss. 6. P. 1015–1030. https://doi.org/10.1046/j.1365-2427.2003.01066.x
  32. 32. Emelko M.B., Stone M., Silins U. et al. (2016) Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Global Change Biol. Vol. 22. Iss. 3. P. 1168–1184. https://doi.org/10.1111/gcb.13073
  33. 33. Emmerton C.A., Cooke C.A., Hustins S. et al. (2020) Severe western Canadian wildfire affects water quality even at large basin scales. Water Resourses. Vol. 183. 116071. https://doi.org/10.1016/j.watres.2020.116071
  34. 34. Farr T.G., Rosen P.A., Caro E. et al. (2007) The shuttle radar topography mission. Rev. Geophys. Vol. 45. Iss. 2. RG2004. https://doi.org/10.1029/2005RG000183
  35. 35. Ferro V., Porto P. (2000) Sediment delivery distributed (SEDD) Model. J. of Hydrologic Engineering. Vol. 5. Iss. 4. P. 411–422. https://doi.org/10.1061/ (ASCE)1084-0699(2000)5:4(411)
  36. 36. Gao J. (1998) Impact of sampling intervals on the reliabi­lity of topographic variables mapped from grid DEMs at a microscale. Int. J. of Geogr. Inform. Sci. Vol. 12. Iss. 8. P. 875–890. https://doi.org/10.1080/136588198241545
  37. 37. Gay A., Cerdan O., Mardhel V. et al. (2016) Application of an index of sediment connectivity in a lowland area. J. Soils Sediments. Vol. 16. No. 1. P. 280–293. https://doi.org/10.1007/s11368-015-1235-y
  38. 38. Gerla P.J., Galloway J.M. (1998) Water quality of two streams near Yellowstone Park, Wyoming, following the 1988 Clover-Mist wildfire. Environ. Geol. Vol. 36. No. 1-2. P. 127–136. https://doi.org/10.1007/s002540050328
  39. 39. Golosov V., Yermolaev O., Litvin L. et al. (2018) Influence of climate and land use changes on recent trends of soil erosion rates within the Russian Plain. Land Degradation & Development. Vol. 29. Iss. 8. P. 2658–2667. https://doi.org/10.1002/ldr.3061
  40. 40. Hansen M.C., Potapov P.V., Moore R. et al. (2013) High-reso­lution global maps of 21st-century forest cover change. Science. Vol. 342. No. 6160. P. 850–853. https://doi.org/10.1126/science.1244693
  41. 41. Hansen M.C., Potapov P.V., Pickens A.H. et al. (2022) Glo­bal land use extent and dispersion within natural land co­ver using Landsat data. Environ. Res. Lett. Vol. 17. No. 3. P. 034050. https://doi.org/10.1088/1748-9326/ac46ec
  42. 42. Hartmann J., Moosdorf N. (2012) The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem., Geophys., Geosyst. Vol. 13. Iss. 12. https://doi.org/10.1029/2012GC004370
  43. 43. Heckmann T., Cavalli M., Cerdan O. et al. (2018) Indices of sediment connectivity: opportunities, challenges and limi­tations. Earth-Sci. Rev. Vol. 187. P. 77–108. https://doi.org/10.1016/j.earscirev.2018.08.004
  44. 44. Hengl T., Mendes de Jesus J., Heuvelink G.B.M. et al. (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. Vol. 12. No. 2. e0169748. https://doi.org/10.1371/journal.pone.0169748
  45. 45. Hersbach H., Bell B., Berrisford P. et al. (2020) The ERA5 global reanalysis. Quart. J. Royal Meteorol. Soc. Vol. 146. Iss. 730. P. 1999–2049. https://doi.org/10.1002/qj.3803
  46. 46. Inbar M., Tamir M., Wittenberg L. (1998) Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology. Vol. 24. Iss. 1. P. 17–33. https://doi.org/10.1016/s0169-555x (97)00098-6
  47. 47. Jumps N., Gray A.B., Guilinger J.J. (2022) Wildfire impacts on the persistent suspended sediment dynamics of the Ventura River, California. J. of Hydrol.: Region. Studies. Vol. 41. 101096. https://doi.org/10.1016/j.ejrh.2022.101096
  48. 48. Lane P.N.J., Sheridan G.J., Noske P.J. et al. (2008) Phosphorus and nitrogen exports from SE Australian forests following wildfire. J. Hydrol. Vol. 361. No. 1-2. P. 186–198. https://doi.org/10.1016/j.jhydrol.2008.07.041
  49. 49. Lappalainen H.K., Kerminen V., Petäjä T. et al. (2016) Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmos. Chem. Phys. Vol. 16. Iss. 22. P. 14421–14461. https://doi.org/10.5194/acp‑16-14421-2016
  50. 50. Magritsky D.V., Frolova N.L., Pakhomova O.M. (2020) Potential Hydrological Restrictions on Water Use in the Basins of Rivers Flowing into Russian Arctic Seas. GES. Vol. 13. No. 2. P. 25–34. https://doi.org/10.24057/2071-9388-2019-59
  51. 51. Maltsev K., Golosov V., Yermolaev O. et al. (2022) Assessment of Net Erosion and Suspended Sediments Yield within River Basins of the Agricultural Belt of Russia. Water. Vol. 14. Iss. 18. P. 2781. https://doi.org/10.3390/w14182781
  52. 52. Melkonian A.K., Willis M.J., Pritchard M.E. et al. (2016) Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. Vol. 174. P. 244–257. https://doi.org/10.1016/j.rse.2015.11.001
  53. 53. Nasonova O.N., Gusev Y.M., Kovalev E. (2023) Climate Change Impact on Water Balance Components in Arctic River Basins. GES. Vol. 15. No. 4. P. 148–157. https://doi.org/10.24057/2071-9388-2021-144
  54. 54. Nearing M.A. (1997) A single, continuous function for slope steepness influence on soil loss. Soil Sci. Soc. Am. J. Vol. 61. Iss. 3. P. 917–919. https://doi.org/10.2136/sssaj1997.03615995006100030029x
  55. 55. Nummelin A., Ilicak M., Li C., Smedsrud L.H. (2016) Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res.: Oceans. Vol. 121. Iss. 1. P. 617–637. https://doi.org/10.1002/2015JC011156
  56. 56. Panagos P., Borrelli P., Meusburger K. et al. (2017) Global rainfall erosivity assessment based on high-temporal re­solution rainfall records. Sci. Rep. Vol. 7. 4175. https://doi.org/10.1038/s41598-017-04282-8
  57. 57. Panagos P., Borrelli P., Meusburger K. et al. (2015) Estima­ting the soil erosion cover-management factor at the European scale. Land Use Policy. Vol. 48. P. 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
  58. 58. Park H., Sherstiukov A.B., Fedorov A.N. et al. (2014) An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia. Environ. Res. Lett. Vol. 9. No. 6. 064026. https://doi.org/10.1088/1748-9326/9/6/064026
  59. 59. Pietroń J., Chalov S.R., Chalova A.S. et al. (2017) Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin. Catena. Vol. 152. P. 82–93. https://doi.org/10.1016/j.catena.2017.01.008
  60. 60. Prepas E.E., Burke J.M., Chanasyk D.S. et al. (2003) Impact of wildfire on discharge and phosphorus export from the Sakwatamau watershed in the Swan Hills, Alberta, during the first two years. J. Environ. Eng. Sci. Vol. 2. No. S1. P. 63–72. https://doi.org/10.1139/s03-036
  61. 61. Renard K.G., Foster G.R., Weesies G.A. et al. (1997) Predicting soil erosion by water: A guide to conservation planning with the resived Universal Soil Loss Equation (RUSLE). In: Agriculture Handbook. No. 537. 403 p.
  62. 62. Reuter H.I., Neison A., Strobl P. et al. (2009) A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. In: IEEE Int. Geosci. and Remote Sensing Symp. Cape Town, South Africa: IEEE. P. 240–243. https://doi.org/10.1109/IGARSS.2009.5417688
  63. 63. Rhoades C.C., Entwistle D., Butler D. (2011) The influence of wildfire extent and severity on streamwater chemistry, sedi­ment and temperature following the Hayman Fire, Colorado. Int. J. Wildland Fire. Vol. 20. No. 3. P. 430–442. https://doi.org/10.1071/WF09086
  64. 64. Scott D.F., Versfeld D.B., Lesch W. (1998) Erosion and sediment yield in relation to afforestation and fire in the mountains of the western cape province, south Africa. South African Geogr. J. Vol. 80. Iss. 1. P. 52–59. https://doi.org/10.1080/03736245.1998.9713644
  65. 65. Sheng M., Fang H. (2014) Research progress in WaTEM/SEDEM model and its application prospect. Progress in geography. Vol. 33. Iss. 1. P. 85–91. https://doi.org/10.11820/dlkxjz.2014.01.010
  66. 66. Smith H.G., Sheridan G.J., Lane P.N. et al. (2011) Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. Vol. 396. Iss. 1-2. P. 170–192. https://doi.org/10.1016/j.jhydrol.2010.10.043
  67. 67. Tadono T., Ishida H., Oda F. et al. (2014) Precise glo­bal DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry Remote Sensing and Spatial Inf. Sci. Vol. II‑4. P. 71–76. https://doi.org/10.5194/isprsannals-II‑4-71-2014
  68. 68. Temnerud J., Bishop K. (2005) Spatial Variation of Streamwater Chemistry in Two Swedish Boreal Catchments: Implications for Environmental Assessment. Environ. Sci. Technol. Vol. 39. Iss. 6. P. 1463–1469. https://doi.org/10.1021/es040045q
  69. 69. Van Rompaey A.J.J., Verstraeten G., Van Oost K. et al. (2001) Modelling mean annual sediment yield using a distributed approach. Earth Surf. Processes Landforms. Vol. 26. Iss. 11. P. 1221–1236. https://doi.org/10.1002/esp.275
  70. 70. Van Rompaey A., Bazzoffi P., Jones R.J.A. et al. (2005) Modeling sediment yields in Italian catchments. Geomorphology. Vol. 65. Iss. 1-2. P. 157–169. https://doi.org/10.1016/j.geomorph.2004.08.006
  71. 71. Verstraeten G., Prosser I.P., Fogarty P. (2007) Predicting the spatial patterns of hillslope sediment delivery to ri­ver channels in the Murrumbidgee catchment, Australia. J. Hydrol. Vol. 334. Iss. 3-4. P. 440–454. https://doi.org/10.1016/j.jhydrol.2006.10.025
  72. 72. Vieira D.C.S., Borrelli P., Jahanianfard D. et al. (2023) Wildfires in Europe: Burned soils require attention. Environ. Res. Vol. 217. 114936. https://doi.org/10.1016/j.envres.2022.114936
  73. 73. Vihma T., Uotila P., Sandven S. et al. (2019) Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmos. Chem. Phys. Vol. 19. Iss. 3. P. 1941–1970. https://doi.org/10.5194/acp‑19-1941-2019
  74. 74. Wessel B., Huber M., Wohlfart C. et al. (2018) Accuracy assessment of the global TanDEM–X Digital Elevation Model with GPS data. ISPRS J. of Photogrammetry and Remote Sensing. Vol. 139. P. 171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017
  75. 75. Wischmeier W.H., Smith D.D. (1978) Predicting rainfall erosion losses: A guide to conservation planning. U.S. Department of Agricultural HandBook. No. 537. 67 p.
  76. 76. Yamazaki D., Ikeshima D., Tawatari R. et al. (2017) A high-accuracy map of global terrain elevations: Accurate Global Terrain Elevation map. Geophys. Res. Lett. Vol. 44. Iss. 11. P. 5844–5853. https://doi.org/10.1002/2017GL072874
  77. 77. Zhang X, Drake NA, Wainwright J, Mulligan M. (1999) Comparison of slope estimates from low resolution DEMs: scaling issues and a fractal method for their solution. Earth Surf. Processes Landforms. Vol. 24. Iss. 9. P. 763–779. https://doi.org/10.1002/ (SICI)1096-9837(199908)24:93.0.CO;2-J
  78. 78. Zhao G., Gao P., Tian P. et al. (2020) Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China. Catena. Vol. 185. 104284. https://doi.org/10.1016/j.catena.2019.104284
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library