RAS Earth ScienceГеоморфология и палеогеография Geomorphology and Paleogeography

  • ISSN (Print) 2949-1789
  • ISSN (Online) 2949-1797

PARAGENETIC ANALYSIS OF THE RECENT FAULT NETWORK IN CENTRAL ALTAI

PII
S29491797S2949178925020092-1
DOI
10.7868/S2949179725020092
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 56 / Issue number 2
Pages
307-322
Abstract
Geomorphological survey revealed a network of the recently active faults that control the formation of main features of the modern relief in the central part of the Altai Mountains. A paragenetic analysis of the identified latest faults has been performed. The result of the paragenetic analysis with reconstruction of three stress fields turned out to satisfy the formal reliability criteria.
Keywords
Алтай неотектоника новейшие разломы кинематический анализ тектонофизика структурный ансамбль морфотектоника
Date of publication
25.09.2024
Year of publication
2024
Number of purchasers
0
Views
19

References

  1. 1. Бондаренко П.М. (1976) Моделирование надвиговых дислокаций в складчатых областях (на примере акташских структур Горного Алтая). Новосибирск: Наука. Сиб. отд. 118 с.
  2. 2. Бурзунова Ю.П. (2011) Углы между сопряженными системами приразломных трещин в идеализированных и природных парагенезисах, формирующихся в различных динамических обстановках. Литосфера. № 2. С. 94–110.
  3. 3. Высоцкий Е.М., Новиков И.С., Лунина О.В. и др. (2021) Сейсмогенные разрывы Чуйского (Горный Алтай) землетрясения 2003 года: морфология, кинематика, пространственное распределение. Геология и геофизика. Т. 62. № 3. С. 348–363. https://doi.org/10.15372/GiG2020133
  4. 4. Дергунов А.Б. (1972) Структуры сжатия и растяжения на востоке Алтая в четвертичное время. Геотектоника. № 3. С. 99–110.
  5. 5. Жимулев Ф.И., Ветров Е.В., Новиков И.С. и др. (2021) Мезозойский внутриконтинентальный орогенез в тектонической истории Колывань-Томской складчатой зоны, синтез геологических данных и результатов трекового анализа апатита. Геология и геофизика. Т. 62. № 9. С. 1227–1245. https://doi.org/10.15372/GiG2020151
  6. 6. Новиков И.С. Высоцкий Е.М., Агатова А.Р. (2004) Геолого-геоморфологические свидетельства позднекайнозойских обстановок сжатия, сдвига и растяжения в пределах Горного Алтая. Геология и геофизика. Т. 45. № 11. С. 1303–1312.
  7. 7. Новиков И.С. (1996) Геоморфологические эффекты внутриконтинентальной коллизии на примере Горного Алтая. Геология и геофизика. Т. 37. № 11. С. 52–60.
  8. 8. Новиков И.С. (2001) Кайнозойская сдвиговая структура Алтая. Геология и геофизика. Т. 42. № 9. С. 1377–1388.
  9. 9. Новиков И.С. (2004) Морфотектоника Алтая. Новосибирск: Изд-во СО РАН. Филиал ГЕО. 313 с.
  10. 10. Новиков И.С. (2013) Реконструкция этапов горообразования обрамления Джунгарской впадины по литостратиграции позднепалеозойских, мезозойских и кайнозойских отложений. Геология и геофизика. Т. 54. № 2. С. 184–202. https://doi.org/10.1016/j.rgg.2013.01.002
  11. 11. Новиков И.С., Дядьков П.Г., Козлова М.П. и др. (2014) Неотектоника и сейсмичность западной части Алтае-Саянской горной области, Джунгарской впадины и Китайского Тянь-Шаня. Геология и геофизика. Т. 55. № 12. С. 1802–1814. https://doi.org/10.1016/j.rgg.2014.11.008
  12. 12. Новиков И.С., Зольников И.Д., Глушкова Н.В. и др. (2023) соотношение различных ансамблей палеозойского и кайнозойского возраста на территории западной части алтае-саянской складчатой области. Геодинамика и тектонофизика. Т. 14. № 3. С. 1–12. https://doi.org/10.5800/GT-2023-14-3-0705
  13. 13. Обручев В.А. (1915) Алтайские этюды (этюд второй). О тектонике Русского Алтая. Землеведение. № 3. С. 1–71.
  14. 14. Семинский К.Ж. (1994) Принципы и этапы спецкартирования разломно-блоковой структуры на основе изучения трещиноватости. Геология и геофизика. № 9. С. 112–130.
  15. 15. Семинский К.Ж. (2003) Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН. Филиал ГЕО. 243 с.
  16. 16. Семинский К.Ж. (2014) Спецкартирование различных зон земной коры. Ст. 1: Теоретические основы и принципы. Геодинамика и тектонофизика. Т. 5. № 2. С. 445–467.
  17. 17. Семинский К.Ж. (2015) Спецкартирование различных зон земной коры. Ст. 2: Основные этапы и перспективы. Геодинамика и тектонофизика. Т. 6. № 1. С. 1–43.
  18. 18. Тимофеев В.Ю., Ардюков В.Г., Тимофеев А.В., Бойко Е.В. (2019) Современные движения земной поверхности Горного Алтая по GPS-наблюдениям. Геодинамика и тектонофизика. Т. 1. № 1. С. 123–146. https://doi.org/10.5800/GT-2019-10-1-0407
  19. 19. Трифонов В.Г. (1985) Особенности развития активных разломов. Геотектоника. № 2. С. 16–26.
  20. 20. Трифонов В.Г., Макаров В.И. (1988) Активные разломы (Монголия). В сб.: Неотектоника и современная геодинамика подвижных поясов. М.: Наука. С. 239–272.
  21. 21. Хилько С.Д., Курушин Р.А., Кочетков В.М. и др. (1985) Землетрясения и основы сейсмического районирования Монголии. М.: Наука. 225 с.
  22. 22. Шерман С.И., Борняков С.А., Буддо В.Ю. (1983) Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука. 112 с.
  23. 23. Calais E., Dong L., Wang M. et al. (2006) Continental deformation in Asia from a combined GPS solution. Geophys. Res. Lett. Vol. 33. L24319. https://doi.org/10.1029/2006GL028433.2006
  24. 24. Cunningham W.D., Windley B.F., Dorjmanja D. et al. (1996) A structural transect across the Mongolian Western Altai: Active transpressional mountain building in central Asia. Tectonics. Vol. 15. Iss. 1. P. 142–156. https://doi.org/10.1029/95TC02354
  25. 25. Ding Guoyu (1984) Active faults in China. In: A collection of papers of International Symposium on continental seismicity and earthquake prediction (ISCSEP). Beijing: Seismol. Press. P. 225–242.
  26. 26. England P., Molnar P. (2005) Late Quaternary to decadal velocity fields in Asia. J. Geophys. Res. Vol. 110. Iss. B12. B12401. https://doi.org/10.1029/2004JB003541
  27. 27. England P., Molnar P. (1997) The field of crustal velocity in Asia calculated from Quaternary rates of slip-on faults. Geophysics J. Int. Vol. 130. Iss. 3. P. 551–582. https://doi.org/10.1111/j.1365-246X.1997.tb01853.x
  28. 28. Hancock P.L. (1985) Brittle microtectonics: Principles and practice. J. Struct. Geol. Vol. 7. No. 3-A. P. 437–457. https://doi.org/10.1016/0191-8141 (85)90048-3
  29. 29. Harding T.P. (1974) Petroleum traps associated with wrench faults. AAPG Bull. Vol. 58. P. 365–378. https://doi.org/10.1306/83D91669-16C7-11D7-8645000102C1865D
  30. 30. Kim Y.S., Peacock D.C.P., Sanderson D.J. (2004) Fault damage zones. J. of Struct. Geology. Vol. 26. Iss. 3. P. 503–517. https://doi.org/10.1016/j.jsg.2003.08.002
  31. 31. Naylor M.A., Mandl G., Superteijn C.H.K. (1986) Fault geometries in basement-induced wrench faulting under different initial stress states. J. Struct. Geology. Vol. 8. No. 7. P. 737–752.
  32. 32. Novikov I.S., Sokol E.V. (2007) Combustion metamorphic events as age markers of orogenic movements in Central Asia. Acta Petrologica Sinica. Vol. 23. No. 7. P. 1561–1572.
  33. 33. Shi Jianbang, Feng Xianyue, Ge Shumo et al. (1984) The Fuyun earthquake fault zone in Xinjiang, China. In: A collection of papers of International Symposium on continental seismicity and earthquake prediction (ISCSEP). Beijing: Seismol. Press. P. 225–242.
  34. 34. Sylvester G.G. (1988) Strike-slip faults. GSA Bull. Vol. 100. No. 11. P. 1666–1703. https://doi.org/10.1130/0016-7606 (1988)1001666:SSF2.3.CO;2
  35. 35. Tchalenko J.S. (1970) Similarities between shear zones of different magnitudes. GSA Bull. Vol. 81. No. 6. P. 1625–1640. https://doi.org/10.1130/0016-7606 (1970)81[1625:SBSZOD]2.0.CO;2
  36. 36. Wilcox R.E., Harding T.P., Seely D.R. (1973) Basic wrench tectonics. AAPG Bull. Vol. 57. P. 74–96. https://doi.org/10.1306/819A424A-16C5-11D7-8645000102C1865D
  37. 37. Yang S.-M., Wang Q., You X.-Z. (2005) Numerical analysis of contemporary horizontal tectonic deformation fields in China from GPS data. Acta Seismologica Sinica. Vol. 18. P. 135–146. https://doi.org/10.1007/s11589-005-0060-6
  38. 38. Zhao B., Huang Y., Zhang C. et al. (2015) Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geodesy and Geodynamics. Vol. 6. No. 1. P. 7–15. https://doi.org/10.1016/j.geog.2014.12.006yy
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library